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Interest in the asymmetric micropolar moment theory of elas-
ticity has recently increased owing to new problems in modern
micromechanics and nanotechnology.1–11 An extensive class of

two-dimensional problems related to the formulation of a gen-
eral asymmetric theory of elasticity was previously studied, exact
analytic solutions were constructed,12,13 and problems of wave
propagation within the model of a Cosserat solid were considered in
Refs.14–16. Another class of problems consists of micropolar beams,
plates and shells. Theories of micropolar beams, plates, and shells
with constrained rotation have been proposed using the method of
hypotheses.17–19 Theories of thin beams, plates and shells based on
the theory of Cosserat surfaces have been developed.20–22 Alterna-
tives for constructing a theory of plates and shells23–25 based on the
three-dimensional equations of the asymmetric theory of elasticity
with independent displacement and rotation fields have been pro-
posed. The fundamental tenets of the general asymmetric theory
of elasticity and refined theories of plates and shells27,28 have been
integrated to construct a theory of micropolar shells and plates.26

Asymptotic analysis has been used extensively to construct a
general theory of thin beams, plates and shells.29–34 Asymptotic
analysis was first used35 to derive equations that describe the bend-
ing of thin plates in displacements and independent rotations from
the three-dimensional equations of the asymmetric theory of elas-
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ticity. The problem of constructing a general theory of micropolar
plates using asymptotic analysis was formulated in Ref. 36.

1. Statement of the problem

Consider an isotropic plate of constant thickness 2h as a three-

dimensional micropolar elastic solid. We introduce a Cartesian
system of coordinates Ox1, x2, x3, so that the Ox1, x2 plane coincides
with the midplane of the plate. We start out from the fundamen-
tal equations of the three-dimensional static problem of the linear
asymmetric theory of elasticity with independent displacement
and rotation fields:37–39 the equilibrium equations

(1.1)

the physical relations

(1.2)

and the geometric relations

(1.3)

Here �ij and �ij are the components of the asymmetric force and
moment stress tensors, �ij are the components of the asymmetric
strain tensor, �ij are the component of the asymmetric bend–twist
tensor, �, �, �, �, � and 	 are the constants of elasticity of the
micropolar material, ui are the components of the displacement
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vector, 
i are the components of the independent rotation vector
at points in the body, �kij are the Levi-Civita symbols and the sub-
scripts i, j after a comma denote differentiation with respect to the
coordinates xi, xj, respectively. Here and henceforth, the subscripts
i, j, k take the values 1, 2, 3.

The following force and moment boundary conditions are spec-
ified on the faces of the plate x3 = ±h

(1.4)

where the p±
i

, m±
i

are the components of the specified external
forces and moments.

The following mixed boundary conditions are specified on the
edge of the plate (� = �1 ∪ �2):

(1.5)

where the p∗
i
, m∗

i
are the components of the given external forces

and moments, ni are the components of the vector of the normal to
the edge surface of the plate, and u∗

i
, 
∗

i
are the given components

of the displacement and independent rotation vectors.
The solution of boundary-value problem (1.1)–(1.5) is the sum

of the solutions of the problems that are symmetric and inversely
symmetric about x3. In the symmetric problem �nm, �33, �n3, �3n,
un and 
3 are even functions in x3, and �n3, �3n, �nm, �33, u3 and 
n

are odd functions. In the inversely symmetric problem the opposite
is true. Here and henceforth, the subscripts n, m take the values 1,
2, and n �= m.

It is assumed that the thickness of the plate 2h is small compared
with its characteristic dimension a, i.e., 2h � a, � = h/a � 1, and � is
a fundamental small parameter of the problem.

After performing scaling along the coordinate lines in the initial
equations and boundary conditions (1.1)–(1.5), as is done in asymp-
totic analysis, we obtain multipliers with the small parameter � in
front of some derivatives. It is assumed that the full stress-strain
state of the thin three-dimensional elastic body forming the plate
consists of the internal stress-strain state that extends throughout
the entire plate and the boundary layers localized near the edge
surface.

2. Introduction of dimensionless coordinates and
dimensionless physical parameters
We will change to dimensionless coordinates in Eqs. (1.1)–(1.3)
using the formulae

(2.1)

As a result, we obtain a singularly perturbed system of differential
equations with the small parameter �.

When the asymptotic representations of the boundary-value
problem (1.1)–(1.5) are constructed in a thin region of the plate, the
values of the physical constants of the micropolar material of the
plate play a major role. We introduce the dimensionless parameters

(2.2)

We will represent the solution of the internal problem in the form
of the asymptotic expansion

(2.3)
tics and Mechanics 72 (2008) 77–86

where s is the number of the asymptotic approximation, Q is any
of the stresses (force and moment stresses), displacements and
independent rotations, q is a natural number, which is different
for different quantities and is determined from the condition of
self-consistency of the recurrent system of equations after sub-
stituting expansion (2.3) into the transformed system (1.1)–(1.3)
and equating the coefficients of all the powers of � to zero in each
equation.

Depending on the order of magnitude of the dimensionless
physical constants (2.2), we consider three different asymptotic
approximations.

3. The theory of micropolar plates with independent
displacement and rotation fields

Let us assume that all the dimensionless physical constants (2.2)
are of the order of unity. In this case, for the number q in the expan-
sions (2.3), we obtain:

for the symmetric problem with respect to x3 (a generalized plane
stress state of the micropolar plate)

(3.1)

for the inversely symmetric problem with respect to x3 (bending
of the micropolar plate)

(3.2)

The specific properties of the internal iterative process are as fol-
lows.

1◦. The system of equations obtained for the approximation with
the superscript s allows of integration with respect to the vari-
able �, and the corresponding required quantities will vary
across the thickness of the plate according to simple laws. In
the initial approximation, for the plane stress-state problem we
find that the displacements um, the independent rotation 
3,
the force stresses �nn, �mn and the moment stresses �m3, �3m
are constants across the thickness of the plate, the displacement
u3, the independent rotations 
m, the force stresses �3m, �m3
and the moment stresses �nn, �mn, �33 are linear functions of

�, and the stress �33 is an even quadratic function of �. For the
bending problem u3, 
m, �3m, �m3, �nn, �mn and �33 are con-
stant across the thickness of the plate, and um, 
3, �nn, �mn, �33,
�m3 and �3m are linear functions of �.

2◦. Instead of the force and moment stresses, we introduce stat-
ically equivalent forces, moments and hypermoments, which
are also expanded in asymptotic series when expansion (2.3) is
taken into account.

For the generalized plane stress-state problem, we introduce the
forces Tnn, Snm, the moments Lm3, L3m, Mm3, M3m and the hypermo-
ments �nn, �mn, �33, which are averaged across the thickness of
the plate (henceforth, unless stated otherwise, the integration is
carried out from −h to h)

(3.3)
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For the bending problem, we will introduce the forces Nm3, N3m,
the moments Mnn, Mmn, M33, Lnn, Lmn, L33 and the hypermoments
�3n, �m3, which are averaged across the thickness of the plate

(3.4)

Note that a governing system of two-dimensional equations for the
internal problem can be obtained for each asymptotic approxima-
tion with the superscript s.

For values of the dimensionless physical constants (2.2) of the
order of unity and the asymptotic approximations (3.1) and (3.2),
we obtain two independent systems of equations.

For the generalized plane stressed state problem we have:

the equilibrium equations

(3.5)

the elasticity relations

(3.6)

and the geometric relations
(3.7)

Here �n are the components of the displacements, �3 is the inde-
pendent rotation at points in the midplane of the plate, �nn and
�nm are the components of the strains, and kn3 are the components
of the bend–twist at points in the midplane of the plate.

It should be taken into account that

(3.8)

Note that the system of equations (3.5)–(3.8) is identical to the cor-
responding system of equations for the plane strain of a micropolar
plate with free rotation previously obtained in Refs. 39–42.

If a solution of the system (3.5)–(3.8) is found, the three-
dimensional required quantities (the displacement vector compo-
nents, the independent rotation vector components, and the force
and moment stress tensor components) can be determined using
tics and Mechanics 72 (2008) 77–86 79

the formulae

For the problem of the bending of micropolar plates with free rota-
tion, we have:

the equilibrium equations

(3.9)

the elasticity relations

(3.10)

the geometric relations

(3.11)

Here w is the deflection of the plate, �n are the independent rota-
tions about the x1 and x2 axes at points in the midplane of the
plate, �n3 are the strain components, and the knn, kmn are the com-
ponents of the bend–twist at points in the mid-plane of the plate.
In addition,
(3.12)

Note that for values of the dimensionless physical parameters (2.2)
of the order of unity in the obtained version of the theory of bending
of micropolar plates with free rotation (3.9)–(3.12), free rotations
and shear strains play the main role. These equations bear some
similarity to the equations of the refined Reissner theory of elastic
plates.43

Substituting expression (3.10) into equalities (3.9), expressing
the strains and bend–twists in the obtained equations in terms
of the deflection and angles of rotation using expressions (3.11),
we obtain a system of three differential equations in w(x1, x2) and
�n(x1, x2), which can be reduced to two equations: an equation in
the displacement w(x1, x2), in which the differential operator will
be the operator of the classical theory of plate with bending and the
flexural stiffness replaced by the quantity 2h(� + 	), and an equa-
tion relative in a function of the angles of rotation of the Helmholtz
type.
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If a solution of the system of equations (3.9)–(3.12) is found, the
required quantities in a three-dimensional region of the plate will
be defined as follows:

Let us consider the boundary layer for a micropolar plate with free
rotation. We will assume that the plate edge surface � on which
the boundary layer is located is specified by the equation x1 = x10.

To study the boundary layer in the three-dimensional equations
(1.1)–(1.3), we make a replacement of independent variables using
the formulae

(3.13)

and we assume that the asymptotic order of all required the quan-
tities remains unchanged when differentiated with respect to 1,
�, �.

We will represent the solution of Eqs. (1.1)–(1.3) thus trans-
formed in the form

(3.14)

where R is any of the force and moment stresses, dimensionless dis-
placements (�i = ui/a) and independent rotations. Since the force
and moment inhomogeneous boundary conditions (1.5), which
were specified on the faces of the plate � = ±1, were satisfied when

the internal problem was solved, solution (3.14) should satisfy the
homogeneous boundary conditions on the planes � = ±1:

(3.15)

After substituting expressions (3.14) into the transformed system
(1.1)–(1.3), we obtain a self-consistent system of equations for the
approximation with the superscript s if asymptotic expansions of
the following form are taken for the required quantities:

(3.16)

The integer � characterizes the intensity of the boundary layer and
S indictes the number of asymptotic approximations.

The system obtained for the asymptotic approximation with the
superscript s can be written in the form of four systems. Two of them
tics and Mechanics 72 (2008) 77–86

have the form

(3.17)

(3.18)

Here

(3.19)

Two more systems are obtained as a result of the following replace-
ment of variables

(3.20)

Henceforth we shall refer to the last two systems as (3.17), (3.20)
and (3.18), (3.20).

The formulae for R(s−1)
k� and R(s−1)

k� are not given here because
of their length. When s = 0, these functions are identically equal to
zero.

Equation (3.17) describe the force plane strain in the (1, �)
plane. When replacement (3.20) is made, equations of antiplane

strain of the moment type can be obtained from them. Equation
(3.18) describe force antiplane strain (torsion). When replacement
(3.20) is made, equations of plane strain of the moment type can
be obtained from them.

According to the properties of the boundary layer we should find
solutions of the systems of equations (3.17), (3.18) and (3.17), (3.18),
(3.20) in the half-strip 0 ≤ 1 < + ∞, –1 ≤ � ≤ 1 that satisfy conditions
(3.15) on the faces of the plate and decay rapidly with increasing
distance from the edge x1 = x10 (1 = 0) inside the plate.

The requirement for the a decaying stress-strain state to exist
imposes additional conditions on the boundary values of the force
stresses, moment stresses, displacements and independent rota-
tions in the solutions of the boundary layer. These conditions can
be derived directly from Eqs. (3.17), (3.18), (3.20). For this purpose,
we apply the operators

to the corresponding equations.
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After some reduction, we obtain the following conditions on the
edge 1 = 0

(3.21)

Another group of conditions can be obtained after making a replace-
ment of variables using (3.20) in Eqs. (3.21). Equalities (3.21) hold
both for quantities with the subscript (p) and for quantities with
the subscript (a), that are introduced below.

The quantities r(s−1)
i

, r̃(s−1)
i

are expressed in terms of the right-

hand sides of R(s−1)
k� (k = 1, 2, . . ., 11) of the governing equations

(3.17), (3.18) for the boundary layer. When s = 0, they are equal to
zero.

These conditions will play an important role in combining
the asymptotic expansions for the internal problem and for the
boundary-layer problems when the three-dimensional boundary
conditions (1.5) on the edge surface � of the plate are satisfied.

The solutions of the systems of equations (3.17), (3.18), (3.20)
that decay as 1 → ∞ and satisfy the homogeneous boundary con-
ditions (3.15) on the faces of the plate (� = ±1) will be called
boundary-layer functions.

When s = 0, systems (3.17), (3.18), (3.20) are homogeneous and
independent. We shall call the boundary layer described by system
of equation (3.17) when s = 0 a pure force plane boundary layer, we
shall call the boundary layer described by system (3.17), (3.20) a
pure moment antiplane boundary layer, we shall call the boundary
layer described by system (3.18) a pure force antiplane boundary
layer, and we shall call the boundary layer described the system
(3.18), (3.20) a pure moment plane boundary layer.

We find the decaying solution of each of the four boundary-layer
problems by separating the variables:
(3.22)

Here R(0)
(p)(p → a) represents any of the required quantities for a

plane (with the subscript (p)), antiplane (with the subscript (a)),
force and moment boundary layer, respectively; A(0)

(p)r and B(0)
(a)r are

unknown constants that apply to the force and moment boundary
layers, respectively.

For a pure force plane boundary layer, the functions R̃(p)r(�r , �)
are expressed in terms of the function �r(�r, �), for which the
following formulae hold:

for the bending problem

(3.23)

where �r is the root of the equation

(3.24)

for the generalized plane stress state problem
tics and Mechanics 72 (2008) 77–86 81

(3.25)

where �r is the root of the equation

(3.26)

Here

(3.27)

It can be shown that the following generalized orthogonality con-
dition holds for boundary-value problem (3.17) when s = 0

(3.28)

The equation for a pure moment antiplane boundary layer
can be obtained by replacing the required quantities in formulae
(3.22)–(3.28) according to (3.20) and replacing A(0)

(p)r by B(0)
(a)r .

For a pure force antiplane boundary layer the functions
R̃(a)r(�r , �) are expressed in terms of the function Fr(�r, �), for which
the following formulae: for the generalized plane stress state

(3.29)

and for the bending problem

(3.30)

For a pure moment plane boundary layer, formulae (3.22), (3.29),
(3.30) are valid when the replacement (3.2) and the replacement of
A(0)

(a)r with B(0)
(p)r are taken into account.

When s ≥ 1, the systems of equations (3.17), (3.18), (3.20) for all
four types of boundary layers become inhomogeneous and have
right-hand sides that are known from the preceding approxima-
tions. The structure of the general solution of the boundary-value
problem for each of the four types of boundary layers is defined by
the equality
(3.31)

The first term represents the general solution of the correspond-
ing homogeneous boundary-value problem and is constructed
precisely like the homogeneous solution in the zeroth approxi-
mation (s = 0). The second and third terms are particular solutions
of the corresponding equations that satisfy homogeneous bound-
ary conditions (3.15). These solutions do not contain undetermined
coefficients.

Thus, the differential equations of the internal problem and
the boundary layers have been constructed using the asymmetric
theory of elasticity with independent displacement and rotation
fields. Therefore, the general solution of three-dimensional prob-
lem (1.1)–(1.5) can be represented in the form

(3.32)

where the integers � and � characterize the intensities of the
plane and antiplane boundary layers, respectively. They should
be selected so that it would be possible to satisfy the three-
dimensional boundary conditions (1.5) on the edge surface � of the
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plate. The subscript in parentheses (int) indicates that the quantity
belongs to the internal stress-strain state. Summation from s = 0 to
s = S is implicit in the repeated index s.

Let us obtain the boundary conditions for the two-dimensional
theory and for a boundary layer.

To fix our ideas, we will consider the case in which the following
three-dimensional boundary conditions of the first boundary-value
problem are specified on the surface � (1 = 10)

(3.33)

We substitute the expressions (3.32) into the three-dimensional
boundary conditions (3.33). We obtain a self-consistent iterative
process when � = � = −2 for the generalized plane stress state prob-
lem and when � = � = −1 for the bending problem. Conditions (3.21)
were used when deriving the boundary conditions for the internal
problem and the boundary-layer problems.

In the zeroth asymptotic approximation (s = 0), taking conditions
(3.21) into account, we obtain the boundary conditions of the the-
ory of micropolar plates with free rotation on the edge x1 = x10 for
the generalized plane stress state

(3.34)

(3.35)

Thus, Eqs. (3.5)–(3.7) and boundary conditions (3.34) comprise a
model of the theory of the generalized plane stress state of microp-
olar plates with free rotation, and Eqs. (3.9)–(3.11) and boundary
conditions (3.35) comprise a model of the theory of the bending of
micropolar plates with free rotation.

On the edge 1 = 0, for the boundary layer we obtain the follow-
ing boundary conditions:

in the generalized plane stress-state problem:
�11(p) = f1(�), �13(p) = 0 for the pure force plane boundary layer
�12(a) = f2(�) for the pure force antiplane boundary layer
�11(a) = 0, �13(a) = �3() for the pure moment antiplane boundary
layer
�12(p) = 0 for the pure moment plane boundary layer

in the bending problem:

�11(p) = 0, �13(p) = f3(�) for the pure force plane boundary layer
�12(a) = 0 for the pure force antiplane boundary layer
�11(a) = �1(�), �13(a) = 0 for the pure moment antiplane boundary
layer
�12(p) = �2(�) for the pure moment plane boundary layer

Here

Note that the differential equations for each of the four boundary
layers are homogeneous when s = 0. Then, if the boundary condi-
tions for the boundary layers are homogeneous, the solution is the
zero solution.

Thus, a theory of micropolar plates with free rotation has been
formulated using an asymptotic approach. For the generalized
plane stress state problem, it consists of the system of equations
(3.5)–(3.7) and boundary conditions (3.34), and for the bending
problem it consists of the system of equations (3.9)–(3.11) and
boundary conditions (3.35). It is noteworthy that each of these
tics and Mechanics 72 (2008) 77–86

systems of equations is of the sixth order and has three boundary
conditions on the edge.

For s = 0 separate boundary-value problems were formulated for
each of the four boundary layers. The constants of the boundary
layers can be determined by, for example, a variational method,
the least squares method, etc. The boundary-value problems for the
boundary layers can be solved, for example, by a finite-difference
method or finite element analysis.

4. The theory of micropolar plates with constrained
rotation

We will assume that the dimensionless physical constants of the
plate material can be represented in the form

(4.1)

where �*, �*, 	* are quantities of the order of unity.
In this case, for boundary-value problem (1.1)–(1.6) an asymp-

totic representation form that differs from (3.1), (3.2) exists. We will
henceforth confine ourselves to the bending problem. In (2.3) we
select the following values of q

(4.2)

The asymptotic form (4.2) has the following special features.

1◦. Rotations at points in the midplane of the plate are expressed
in terms of the deflection of the plate at those points.

2◦. The system of equations for one group of the quantities sought
represents the theory of micropolar plates with constrained
rotation. For �33 and �3m separate differential equations in
the transverse coordinate �, and the coordinates , � serve as
parameters.

Note that the asymptotic form (4.2) for the quantities of the
classical theory of elasticity is identical with the asymptotic form
of the corresponding problem in the classical theory of elasticity
for plates.31

When (4.1) is taken into account, the asymptotic form (4.2) leads
to the following system of two-dimensional governing equations of

the theory of bending of micropolar plates with constrained rota-
tion: the equilibrium equations

(4.3)

and the physical relations

(4.4)
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Here

(4.5)

(4.6)

Using Eqs. (4.3) and (4.4), we obtain the resolvent for the deflection

(4.7)

Here

(4.8)

where D is the classical stiffness of the plate and D* is the flexural
stiffness of micropolar plates with constrained rotation.

The resolvent for the bending of micropolar plates with con-
strained rotation is similar to the Sophie Germain–Lagrange
equation of the classical theory of plates. The difference is in the
formulae for the stiffness. In addition, terms related to the external
moments mn appear on the right-hand side of Eq. (4.7).We obtain
the following boundary-value problems in �33 and �3m

(4.9)

(4.10)

The coordinates x1, x2 serve as parameters.
If a solution of Eqs. (4.7), (4.9) and (4.10) is known, the required

quantities in a three-dimensional region of the plate are defined as
follows:
The resolvent for the bending of a micropolar plate (4.7) can
be obtained by an asymptotic analysis using formulae (2.3) (4.2)
directly from the three-dimensional asymmetric theory of elas-
ticity with constrained rotation.44 The resolvent for bending of
micropolar plates (4.7) was previously obtained in Ref. 18 by the
method of hypotheses from the three-dimensional asymmetric
theory of elasticity with constrained rotation.44

An asymptotic form can be chosen for the problem that is sym-
metric about x3, and a theory of the generalized plane stress state
of micropolar plates with constrained rotation can be constructed
in a similar manner. An identical theory was constructed for the
case of plane strain using the method of hypotheses in Refs. 42, 45.

To study the boundary stress-strain state of a plate in Eqs.
(1.1)–(1.3), we replace the independent variables using formulae
(3.13) and take into account relations (4.1) for the dimensionless
physical constants. Then, the solution of Eqs. (1.1)–(1.3), trans-
formed in this way, can be represented in the form (3.14). In the
asymptotic approximations we obtain a self-consistent system by
tics and Mechanics 72 (2008) 77–86 83

selecting the following asymptotic representations for the required
quantities

(4.11)

We represent the equations obtained for the asymptotic approxi-
mations in the form of two systems

(4.12)
(4.13)

The expressions for R(s−1)
k

and R̃(s−1)
k

are not given here because of
their length. When s = 0, they are equal to zero.

The systems of equations (4.12) and (4.13) have a mixed
force–moment form. System (4.12) defines a plane force–moment
stress-strain state (plane strain), and system (4.13) defines an
antiplane force–moment stress-strain state. The requirement for
a decaying stress-strain state to exist imposes the following addi-
tional conditions on the boundary values of the variables of the
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asymmetric theory of elasticity

(4.14)

The quantities E(s−1)
k

, Ẽ(s−1)
i

, Ē(s−1) are expressed in integral form in

terms of R(s−1)
i

and R̃(s−1)
k

. They are all equal to zero when s = 0.
In the initial asymptotic approximation (s = 0) systems (4.12) and

(4.13) separate completely, and the decaying solutions of both sys-
tems can be found by a separation of variables. As a result, we can
construct functions of the boundary layer and prove the following
generalized orthogonality formula for them

Investigating interaction of the inner stress-strain state and the
boundary layers, we obtain the boundary conditions of the theory of
micropolar plates with constrained rotation for the first boundary-
value problem when s = 0

(4.15)

Boundary conditions (4.15) for micropolar plates with constrained
rotation were previously obtained by the method of hypotheses.46
Thus, the boundary-value problem of the theory of bending of
micropolar plates with constrained rotation is described by sys-
tem of equations (4.3), (4.4) (or the resolvent (4.7) and boundary
conditions (4.15)). The corresponding boundary conditions for the
boundary-layer problems for systems (4.12) and (4.13) were also
obtained when s = 0.

5. The theory of micropolar plates with “small shear
stiffness”

It was stated above that different asymptotic forms of boundary-
value problem (1.1)–(1.6) of the asymmetric theory of elasticity
with independent displacement and rotation fields can be con-
structed, depending on the values of the dimensionless physical
constants of the plate material (2.2). In Sections 3 and 4, we con-
structed and studied two different asymptotic forms, depending
on the values of the dimensionless physical constants of the plate
material. These asymptotic forms provided basis for constructing
two theories of micropolar plates, namely, a theory with free rota-
tion and a theory with constrained rotation, and corresponding
boundary-layer theories.
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We will construct a third asymptotic form, which differs from
the preceding ones, using the following representations for the
dimensionless physical constants

(5.1)

Consider the bending problem. In expansions (2.3), for q we obtain

(5.2)

With asymptotic representations (5.2) the quantities of “pure
moment” origin in the equations of the theory of micropolar plates
can be separated, and they form an autonomous system of equa-
tions, for which separate boundary conditions are obtained. For
the “force” part of the problem we obtain a unique shear theory
of plates, in which the angles of rotation are specified by the “pure
moment” part of the problem.

We will formulate these systems of equations:

the equilibrium equations

(5.3)

the elasticity relations

(5.4)

and the geometric relations

(5.5)

Here knn and knm are the components of the bend–twist tensor at
points in the midplane of the plate and �n are independent rota-
the equilibrium equations

(5.6)

the physical relations

(5.7)

and the geometric relations

(5.8)

Here w is the deflection of the plate, �n3 are the shear strains, and
Knm are the flexural-torsional strains of the midplane of the plate.
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For the two-dimensional “force” plate bending problem
(5.6)–(5.8) we obtain the following resolvent in w(x1, x2)

(5.9)

The theory of micropolar plates (5.6)–(5.9) has been constructed
here for the first time taking relations (5.1), (5.2) into account.
We call the coefficient 8h� the shear moment stiffness, because
the physical constant � is also the shear modulus, as is the clas-
sical modulus �. Then, taking relations (5.1) into account, this
theory may be treated as the theory of plates “with small shear
stiffness.”

Taking relations (5.1) into consideration, the asymptotic expan-
sions for the boundary layers has the form

(5.10)

We will represent the constitutive equations of the boundary layers
in the form of the following four systems of equations

(5.11)
(5.12)

(5.13)
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(5.14)

The quantities F (s−1)
k

and F̃ (s−1)
k

are not given here because of their
length. They are equal to zero when s = 0.

Note that the boundary layers constructed differ considerably
from the boundary layers obtained using asymptotic expansions
(3.16).

The boundary-layer problems for 1 = 0 have the following
properties, which were obtained from the systems of equations
(5.11)–(5.14)

(5.15)

Matching the inner stress-strain state and the boundary layers, we
obtain the boundary conditions for systems of equations (5.3)–(5.5)
and (5.6)–(5.9).

In the case of the first boundary-value problem, for systems of

equations (5.3)–(5.5) we have the following boundary conditions
on the contour � on the midplane of the plate

(5.16)

and for systems of equations (5.6)–(5.9) we have

(5.17)

In this case, for the boundary-layer problems it is significant that
the “pure moment” boundary layers (5.13), (5.14) become the
zero boundary layers, i.e., they have a lower degree of inten-
sity when s = 0 (the final results for non-zero boundary layers are
not presented here). The “force” boundary layers (5.11), (5.12) are
expressed precisely as they would be according to the classical
theory.31 Thus, the “pure moment” boundary-value problem of
micropolar plates is described by system of equations (5.3)–(5.5)
with boundary conditions (5.16), and the “force” boundary-value
problem is described by system of equations (5.6)–(5.9) with
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boundary conditions (5.17). These two boundary-value problems
define a theory of bending of thin micropolar plates with “small
shear stiffness.”

For the “force” boundary layers we obtain the following bound-
ary conditions when 1 = 0: for a plane “force” boundary layer

(5.18)

and for an antiplane “force” boundary layer

(5.19)

When s = 0, the boundary-value problem for micropolar “force”
boundary layers is represented by Eqs. (5.11) and boundary con-
ditions (5.18), as well as by Eqs. (5.12) and boundary conditions
(5.19).
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